id |
caadria2022_357 |
authors |
Bedarf, Patrick, Szabo, Anna, Zanini, Michele, Heusi, Alex and Dillenburger, Benjamin |
year |
2022 |
title |
Robotic 3D Printing of Mineral Foam for a Lightweight Composite Concrete Slab |
source |
Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 61-70 |
doi |
https://doi.org/10.52842/conf.caadria.2022.2.061
|
summary |
This paper presents the design and fabrication of a lightweight composite concrete slab prototype using 3D printing (3DP) of mineral foams. Conventionally, concrete slabs are standardized monolithic elements that are responsible for a large share of used materials and dead weight in concrete framed buildings. Optimized slab designs require less material at the expense of increasing the formwork complexity, required labour, and costs. To address these challenges, foam 3D printing (F3DP) can be used in construction as demonstrated in previous studies for lightweight facade elements. The work in this paper expands this research and uses F3DP to fabricate the freeform stay-in-place formwork components for a material-efficient lightweight ribbed concrete slab with a footprint of 2 x 1.3 m. For this advancement in scale, the robotic fabrication and material processing setup is refined and computational design strategies for the generation of advanced toolpaths developed. The presented composite of hardened mineral foam and fibre-reinforced ultra-high-performance concrete shows how custom geometries can be efficiently fabricated for geometrically complex formwork. The prototype demonstrates that optimized slabs could save up to 72% of total concrete volume and 70% weight. The discussion of results and challenges in this study provides a valuable outlook on the viability of this novel fabrication technique to foster a sustainable and resourceful future construction culture. |
keywords |
robotic 3d-printing, mineral foam, stay-in-place formwork, concrete composite, SDG 12 |
series |
CAADRIA |
email |
|
full text |
file.pdf (1,077,072 bytes) |
references |
Content-type: text/plain
|
Bedarf, P., Dutto, A., Zanini, M. & Dillenburger, B. (2021)
Foam 3D printing for construction: A review of applications, materials, and processes
, Automation in Construction, 130, 103861. https://doi.org/10.1016/j.autcon.2021.103861Bedarf, P., Martinez Schulte, D., Senol, A., Jeoffroy, E., & Dillenburger, B. (2021). Robotic 3D Printing of Mineral Foam for a Lightweight Composite Facade Shading Panel. In 26th International Conference of the Association for Computer-Aided Architectural Design Research in Asia, CAADRIA 2020 (pp. 603–612). The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA)
|
|
|
|
Bedarf, P., Szabo, A., Zanini, M. & Dillenburger, B. (2021)
Machine Sensing for Mineral Foam 3D Printing
, International Conference on Intelligent Robots and Systems: Workshop Robotic Fabrication, IROS 2021. https://doi.org/10.3929/ethz-b-000506097BubbleDeck. (2021). The Original Voided Slab. Retrieved May 11 2021, from https://www.bubbledeck.comCobiax. (2021). Voided flat plate slab technologies available worldwide. Retrieved May 11 2021, from https://www.cobiax.com/intl/en/Compas. (2020). Retrieved May 11 2021, from https://compas.dev/index.htmlFernández-Jiménez, A., & Palomo, A. (2005). Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement and Concrete Research, 35(10), 1984–1992. https://doi.org/10.1016/j.cemconres.2005.03.003Furet, B., Poullain, P., & Garnier, S. (2019). 3D printing for construction based on a complex wall of polymer-foam and concrete. Additive Manufacturing, 28, 58–64. https://doi.org/10.1016/j.addma.2019.04.002Georgopoulos, C., & Minson, A. (2014). Sustainable concrete solutions. Wiley-Blackwell.Halpern, A. B., Billington, D. P., & Adriaenssens, S. (2013). The Ribbed Floor Slab Systems of Pier Luigi Nervi. Proceedings of the International Association for Shell and Spatial Structures (IASS), 7. http://formfindinglab.princeton.edu/wp-content/uploads/2011/09/Nervi_ribbed_floors.pdfHansemann, G., Schmid, R., Holzinger, C., Tapley, J. P., Peters, S., Trummer, A., & Kupelwieser, H. (2021). Lightweight Reinforced Concrete Slab: 130 different 3D printed voids. CPT Worldwide - Construction Printing Technology, 2021(2), 68.Jipa, A., Calvo Barentin, C., Lydon, G., Rippmann, M., Chousou, G., Lomaglio, M., Schlüter, A., Block, P., & Dillenburger, B. (2019). 3D-Printed Formwork for Integrated Funicular Concrete Slabs. Proceedings of the IASS Annual Symposium 2019, 10. https://www.researchgate.net/publication/335175125_3D-Printed_Formwork_for_Integrated_Funicular_Concrete_SlabsJipa, A., & Dillenburger, B. (2021). 3D Printed Formwork for Concrete: State-of-the-Art, Opportunities, Challenges, and Applications. 3D Printing and Additive Manufacturing, 00, 24. https://doi.org/10.1089/3dp.2021.0024Keating, S. J., Leland, J. C., Cai, L., & Oxman, N. (2017). Toward site-specific and self-sufficient robotic fabrication on architectural scales. Science Robotics, 2(5), 1-15. https://doi.org/10.1126/scirobotics.aam8986Liew, A., López, D. L., Van Mele, T., & Block, P. (2017). Design, fabrication and testing of a prototype, thin-vaulted, unreinforced concrete floor. Engineering Structures, 137, 323–335. https://doi.org/10.1016/j.engstruct.2017.01.075Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9UN Environment Programme. (2020). Global Status Report for Buildings and Construction. Retrieved May 11 2021, from https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdfXu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5Zhao, H., Gu, F., Huang, Q.-X., Garcia, J., Chen, Y., Tu, C., Benes, B., Zhang, H., Cohen-Or, D., & Chen, B. (2016). Connected fermat spirals for layered fabrication. ACM Transactions on Graphics, 35(4), 1–10. https://doi.org/10.1145/2897824.2925958
|
|
|
|
last changed |
2022/07/22 07:34 |
|