CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References
id caadria2024_234
authors Xiong, Shuyan, Zea Escamilla, Edwin and Habert, Guillaume
year 2024
title Uncovering the Circular Potential: Estimating Material Flows for Building Systems Components Reuse in the Swiss Built Environment
doi https://doi.org/10.52842/conf.caadria.2024.1.545
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 1, pp. 545–554
summary The construction industry plays a critical role in global resource consumption and greenhouse gas emissions, highlighting the urgent need for sustainable development practices. However, a key challenge in this area is the lack of effective models for resource use that align with circular economy principles. This gap hinders efforts to achieve sustainable resource management, especially in the face of increasing urbanization and material demand. To address this issue, our study presents a Parametric Predictive Model (PPM) to improve resource efficiency, specifically targeting the often-underestimated building systems. The model takes a bottom-up approach, utilizing local databases to accurately assess material stocks of building systems, thereby improving the granularity of data on material composition. Using advanced machine learning algorithms, the model processes both categorical and non-categorical data. The output, an enriched comprehensive database can support more informed decision making in sustainable resource recovery and allocation, but also contribute to the broader goals of reducing waste and promoting resource efficiency in the built environment.
keywords Building Systems, Building Stock Modelling, Predictive Model, Circular Economy, Parametric Model
series CAADRIA
email xiong@ibi.baug.ethz.ch
full text file.pdf (579,765 bytes)
references Content-type: text/plain
Details Citation Select
100%; open D'Alonzo, V., Novelli, A., Vaccaro, R., Vettorato, D., Albatici, R., Diamantini, C., & Zambelli, P. (2020) Find in CUMINCAD ClimateStudio Documentation , Energy and Buildings, 206, 109581. https://doi.org/10.1016/j.enbuild.2019.109581

100%; open Hamilton, I., Kennard, H., Rapf, O., Kockat, J., Zuhaib, S., Abergel, T., Oppermann, M., Otto, M., Loran, S., Steurer, N., & others. (2020) Find in CUMINCAD A History of Parametric , United Nations Environment Programme, Ef-ficient and Resilient Buildings and Construction Sector: Nairobi, Kenya

100%; open Hoxha, E., Maierhofer, D., Saade, M. R. M., & Passer, A. (2021) Find in CUMINCAD Home , Inter-national Journal of Life Cycle Assessment, 26(5), 852-863. https://doi.org/10.1007/s11367-021-01919-9

100%; open Leao, S., Bishop, I., & Evans, D. (2001) Find in CUMINCAD Assessing the demand of solid waste disposal in urban region by urban dynamics modelling in a GIS environment , Resources, Conservation and Recycling, 33(4), 289-313. https://doi.org/10.1016/S0921-3449(01)00090-8

100%; open Office, F. S. (2023) Find in CUMINCAD Machine learning: A probabilistic perspective , Federal Statistical Office. https://www.bfs.admin.ch/asset/en/27905171

100%; open Pasichnyi, O., Wallin, J., & Kordas, O. (2019) Find in CUMINCAD Data-driven building archetypes for urban building energy modelling , Energy, 181, 360-377. https://doi.org/10.1016/j.energy.2019.04.197

100%; open Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., ... Chintala, S. (2019) Find in CUMINCAD PyTorch: An Imperative Style, High-Performance Deep Learning Library , Advances in Neural Information Processing Systems 32 (pp. 8024-8035). Curran Associates, Inc. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

100%; open Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011) Find in CUMINCAD Scikit-learn: Machine Learning in Py-thon , Journal of Machine Learning Research, 12, 2825-2830

100%; open Röck, M., Hollberg, A., Habert, G., & Passer, A. (2018) Find in CUMINCAD LCA and BIM: Visualization of environmental potentials in building construc-tion at early design stages , Building and Environment, 140(December 2017), 153-161. https://doi.org/10.1016/j.buildenv.2018.05.006

100%; open Verellen, E., & Allacker, K. (2020) Find in CUMINCAD Mitigation pathways compatible with 1 , IOP Conference Series: Earth and Environmental Science, 588(3), 032006. https://doi.org/10.1088/1755-1315/588/3/032006

100%; open Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., ... SciPy 1.0 Contributors. (2020) Find in CUMINCAD SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python , Nature Methods, 17, 261-272. https://doi.org/10.1038/s41592-019-0686-2

last changed 2024/11/17 22:05
pick and add to favorite papersHOMELOGIN (you are user _anon_597516 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002