id |
caadria2024_414 |
authors |
Uzun, Fatih, Altun, Sevgi, Kayasü, Sena, Öztürk, Berkay, Şahin, Yusuf, Ünal, Gözde and Özkar, Mine |
year |
2024 |
title |
Utilizing UV-Mapping for the 3D-Point Cloud Segmentation of Architectural Heritage |
source |
Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 313322 |
doi |
https://doi.org/10.52842/conf.caadria.2024.2.313
|
summary |
This paper presents a procedural framework to process raw photogrammetric data intended for 3D point cloud segmentation of masonry structures. Raw data is segmented in order to obtain operable 3D models through processes that increasingly integrate computational methods, which can improve efficiency and accuracy. The idea is to improve the quality of the initial data, which can then be used to train a machine-learning system in identifying these materials more accurately. The approach incorporates a high-poly detailed mesh model generated through photogrammetry. The detailed model serves as a reference to extract colour information that we project onto a custom-created, low-poly representation of the dome architectural element, ensuring a precise fit with the target model. The model to utilise UV maps and height maps to preprocess data across various scales is a step towards facilitating the documentation and conservation of historic structures with an awareness of architectural knowledge. |
keywords |
architectural heritage, unit-based, masonry documentation, 3D point cloud segmentation, UV mapping, point cloud processing |
series |
CAADRIA |
email |
|
full text |
file.pdf (2,063,626 bytes) |
references |
Content-type: text/plain
|
Battini, C., Ferretti, U., De Angelis, G., Pierdicca, R., Paolanti, M., & Quattrini, R. (2024)
Automatic generation of synthetic heritage point clouds: Analysis and segmentation based on shape grammar for historical vaults
, Journal of Cultural Heritage, 66, 37-47. https://doi.org/10.1016/j.culher.2023.10.003
|
|
|
|
Guidi, G., & Angheleddu, D. (2016)
Displacement mapping as a metric tool for optimizing mesh models originated by 3D digitization
, Journal on Computing and Cultural Heritage, 9(2), 1-23. https://doi.org/10.1145/2843947
|
|
|
|
Han, B., Zhang, X., & Ren, S. (2022)
PU-gacnet: Graph attention convolution network for point cloud Upsampling
, Image and Vision Computing, 118, 104371. https://doi.org/10.1016/j.imavis.2021.104371
|
|
|
|
Karataş, L., Alptekin, A., & Yakar, M. (2023)
Investigating the material deteriorations on the facades of stone structures by terrestrial laser scanning method: Case study of Mardin mansion
, Afyon Kocatepe University Journal of Sciences and Engineering, 23(3), 700-711. https://doi.org/10.35414/akufemubid.1197891
|
|
|
|
Kayin, A. (2017)
Konya Sâhip Ata Hanikah? Çinileri
, Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (37), 206-221
|
|
|
|
Lanzara, E., Catello, D., & Casciello, M. (2022)
Scan to HBIM for complex reflective metal artefacts
, 3d digitisation and restoration. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-2/W1-2022, 121-128. https://doi.org/10.5194/isprs-archives-xlviii-2-w1-2022-121-2022
|
|
|
|
Matrone, F., Lingua, A., Pierdicca, R., Malinverni, E. S., Paolanti, M., Grilli, E., Remondino, F., Murtiyoso, A., & Landes, T. (2020)
A benchmark for large-scale heritage point cloud semantic segmentation
, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020, 1419-1426. https://doi.org/10.5194/isprs-archives-xliii-b2-2020-1419-2020
|
|
|
|
Moyano, J., León, J., Nieto-Julian, J. E., & Bruno, S. (2021)
Semantic interpretation of architectural and archaeological geometries: Point cloud segmentation for HBIM parameterisation
, Automation in Construction, 130, 103856. https://doi.org/10.1016/j.autcon.2021.103856
|
|
|
|
Poranne, R., Tarini, M., Huber, S., Panozzo, D., & Sorkine-Hornung, O. (2017)
Autocuts
, ACM Transactions on Graphics, 36(6), 1-11. https://doi.org/10.1145/3130800.3130845
|
|
|
|
Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017)
Pointnet: Deep learning on point sets for 3d classification and segmentation
, Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652-660)
|
|
|
|
Randazzo, L., Collina, M., Ricca, M., Barbieri, L., Bruno, F., Arcudi, A., & La Russa, M. F. (2020)
Damage indices and photogrammetry for decay assessment of stone-built cultural heritage: The case study of the San Domenico church main entrance Portal (South Calabria, Italy)
, Sustainability, 12(12), 5198. https://doi.org/10.3390/su12125198
|
|
|
|
Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., & Solomon, J. M. (2019)
Dynamic graph CNN for learning on point clouds
, ACM Transactions on Graphics, 38(5), 1-12. https://doi.org/10.1145/3326362
|
|
|
|
last changed |
2024/11/17 22:05 |
|