CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References
id ecaade2014_147
authors James Charlton and Markus Brune
year 2014
title Towards a dynamic evacuation system: developing methodologies to simulate the evacuation capabilities of subway stations in response to a terrorist attack with CBRNE weapons
doi https://doi.org/10.52842/conf.ecaade.2014.1.109
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 109-118
summary Events in recent times have highlighted the vulnerability of underground public transportation to possible terrorist attacks. A key question therefore is how an evacuation can be accomplished from underground stations safely. The strategy “go up and take the nearest exit to the surface” might not be the best response. Evidence from the Daegu subway station fire in 2003, investigated by Tsujimoto (2003) and Jeon and Hong (2009) establish that smoke or toxic airborne substances from a terrorist attack tend to use the same direct routes used by the fleeing passengers and as result significant injuries or fatalities can occur. This study proposes the concept of a dynamic evacuation system which would guide subway users along safe routes. To test how this system may operate, the study discussed combines measurements from tracer gas experiments with climate measurements to establish how toxic agents spread in subway stations under certain conditions and combines these results with those from pedestrian simulations applied to calculate evacuation times for possible escape routes. By integrating the resulting dataset from these methods, an evidence base of how a dynamic evacuation system may work can start to form.
wos WOS:000361384700010
keywords Pedestrian simulation, subway climatology; cbrne; subway evacuation; tracer gas experiments
series eCAADe
email
full text file.pdf (393,806 bytes)
references Content-type: text/html Access Temporarily Restricted

Access Temporarily Restricted

Too many requests detected. Please wait 60 seconds or verify that you are a human.

If you are a human user and need immediate access, you can click the button below to continue:

If you continue to experience issues, please open a ticket at papers.cumincad.org/helpdesk

last changed 2022/06/07 07:52
pick and add to favorite papersHOMELOGIN (you are user _anon_587119 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002