id |
ecaade2022_161 |
authors |
Kharbanda, Kritika, Papadopoulou, Iliana, Pouliou, Panagiota, Daw, Karim, Belwadi, Anirudh and Loganathan, Hariprasath |
year |
2022 |
title |
LearnCarbon - A tool for machine learning prediction of global warming potential from abstract designs |
doi |
https://doi.org/10.52842/conf.ecaade.2022.2.601
|
source |
Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 601–610 |
summary |
The new construction that is projected to take place between 2020 and 2040 plays a critical role in embodied carbon emissions. The change in material selection is inversely proportional to the budget, as the project progresses. Given the fact that early-stage design processes often do not include environmental performance metrics, there is an opportunity to investigate a toolset that enables early-stage design processes to integrate this type of analysis into the preferred workflow of concept designers. The value here is that early-stage environmental feedback can inform the crucial decisions that are made in the beginning, giving a greater chance for a building with better environmental performance in terms of its life cycle. This paper presents the development of a tool called LearnCarbon, as a plugin of Rhino3d, used to educate architects and engineers in the early stages about the environmental impact of their design. It facilitates two neural networks trained with the Embodied Carbon Benchmark Study by Carbon Leadership Forum, which learn the relationship between building geometry, typology, and structure with the Global Warming potential in tCO2e. The first one, a regression model, is able to predict the GWP based on the massing model of a building, along with information about typology and location. The second one, a classification model, predicts the construction type given a massing model and target GWP. LearnCarbon can help improve the building life cycle impact significantly, through early predictions of the structure’s material, and can be used as a tool for facilitating sustainable discussions between the architect and the client. |
keywords |
Machine Learning, Carbon Emissions, LCA, Rhino Plug-in |
series |
eCAADe |
email |
yotapouliou@gmail.com |
full text |
file.pdf (757,950 bytes) |
references |
Content-type: text/plain
|
last changed |
2024/04/22 07:10 |
|