id |
ecaade2022_51 |
authors |
Lüling, Claudia and Carl, Timo |
year |
2022 |
title |
Fuzzy 3D Fabrics & Precise 3D Printing - Combining research with design-build investigations |
source |
Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 67–76 |
doi |
https://doi.org/10.52842/conf.ecaade.2022.1.067
|
summary |
We present a synergetic combination of two previously separate process technologies to create novel lightweight structures. 3D textiles and 3D printing. We will outline the development of a novel material system that consisted of flexible and foldable 3D textiles that are combined with stiff, linear 3D printed materials. Our aim is to produce material-reduced lightweight elements for building applications with an extended functionality and recyclability. Within an ongoing research project (6dTEX), we explore a mono-material system, which uses the same base materials for both the filament for 3D printing and the yarn of the fabrication of the 3D textiles. Based on preliminary 3D printing tests on flat textiles key process parameters were identified. Expertise has been established for 3D printing on textiles as well as for using printable recycled polyester materials (PES textile and PETG filament. Lastly for 3D printing on non-combustible material (alkali-resistant (AR) glass textiles and for 3D concrete printing (3DCP). The described process- knowledge facilitates textile architectures with an extended vocabulary, ranging from flat to single curved and folded topologies. Whereas the foundations are laid in the research project on a meso scale, we also extended our explorations into an architectural macro scale. For this, we used a more speculative design-build studio that was based on a more loose combination of 3D textiles and 3D printed elements. Lastly, we will discuss, how this first architectural application beneficially informed the research project. |
keywords |
Material-Based Design, Additive Manufacturing, Design-Build, Parametric Modelling, Form-Finding, Co-Creation, Lightweight Structures, Single-Origin Composites, Space Fabrics |
series |
eCAADe |
email |
|
full text |
file.pdf (1,484,433 bytes) |
references |
Content-type: text/html
Access Temporarily Restricted
Access Temporarily Restricted
Too many requests detected. Please wait 60 seconds or verify that you are a human.
If you are a human user and need immediate access, you can click the button below to continue:
If you continue to experience issues, please open a ticket at
papers.cumincad.org/helpdesk
|
last changed |
2024/04/22 07:10 |
|