id |
ecaade2024_199 |
authors |
Zhong, Ximing; Liang, Jiadong; Li, Yingkai |
year |
2024 |
title |
Building-Agent: A 3D generation agent framework integrating large language models and graph-based 3D generation model |
source |
Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 291–300 |
doi |
https://doi.org/10.52842/conf.ecaade.2024.2.291
|
summary |
Large language models (LLMs) possess powerful intelligence, demonstrating unprecedented potential in AI-driven architectural design. While LLMs can understand design tasks, they lack the reasoning capability from language to three-dimensional (3D) architectural models. This paper proposes a novel 3D building generative agent framework, Building-Agent, which combines LLMs' decision-making capabilities with Graph Neural Networks (GNNs) generative abilities. Experiments utilize real design briefs and site constraints to test the building agent's task-processing capabilities. The results demonstrate that the Building-Agent can accurately predict different site layout outcomes and achieve high task completion rates. Furthermore, it enables interactive 3D building layout iteration through multi-step natural language instructions. The Building-Agent's ability to comprehend and reason about 3D spatial layouts, based on the graph representations of 3D models in the modeling engine and the requirements of natural language inputs, showcases its potential to accomplish tasks with initial proficiency. Compared to previous 3D generative models that rely on human decision-making for inputting spatial constraints, the Building-Agent paves the way for AI to comprehend and complete 3D design tasks autonomously, promising a transformative impact on AI and architectural design. |
keywords |
Building-Agent, Large Language Model, Graph Generation Model, Language Comprehending, 3D Spatial Reasoning, 3D Cognitive Ability |
series |
eCAADe |
email |
|
full text |
file.pdf (2,380,690 bytes) |
references |
Content-type: text/html
Access Temporarily Restricted
Access Temporarily Restricted
Too many requests detected. Please wait 60 seconds or verify that you are a human.
If you are a human user and need immediate access, you can click the button below to continue:
If you continue to experience issues, please open a ticket at
papers.cumincad.org/helpdesk
|
last changed |
2024/11/17 22:05 |
|