authors |
Tsou, Jin-Yeu |
year |
1992 |
title |
Using conceptual modelling and an object-oriented environment to support building cost control during early design |
source |
College of Architecture and Urban Planning, University of Michigan |
summary |
This research investigated formal information modelling techniques and the object-oriented knowledge representation on the domain of building cost control during early design stages. The findings contribute to an understanding of the advantages and disadvantages of applying formal modelling techniques to the analysis of architectural problems and the representation of domain knowledge in an object-oriented environment. In this study, information modelling techniques were reviewed, formal information analysis was performed, a conceptual model based on the cost control problem domain was created, a computational model based on the object-oriented approach was developed, a mechanism to support information broadcasting for representing interrelationships was implemented, and an object-oriented cost analysis system for early design (OBCIS) was demonstrated. The conceptual model, based on the elemental proposition analysis of NIAM, supports a formal approach for analyzing the problem domain; the analysis results are represented by high-level graphical notations, based on the AEC Building System Model, to visually display the information framework of the domain. The conceptual model provides an intermediate step between the system designer's view of the domain and the internal representation of the implementation platform. The object-oriented representation provides extensive data modelling abilities to help system designers intuitively represent the semantics of the problem domain. The object-oriented representation also supports more structured and integrated modules than conventional programming approaches. Although there are many advantages to applying this technique to represent the semantics of cost control knowledge, there are several issues which need to be considered: no single satisfactory classification method can be directly applied; object-oriented systems are difficult to learn; and designing reusable classes is difficult. The dependency graph and information broadcasting implemented in this research is an attempt to represent the interrelationships between domain objects. The mechanism allows users to explicitly define the interrelationships, based on semantic requirements, among domain objects. In the conventional approach, these relationships are directly interpreted by system designers and intertwined into the programming code. There are several issues which need to be studied further: indirect dependency relationship, conflict resolution, and request-update looping based on least-commitment approach. |
series |
thesis:PhD |
email |
|
references |
Content-type: text/plain
|
last changed |
2003/02/12 22:37 |
|