CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References
id ijac202220203
authors Dzieduszyński, Tomasz
year 2022
title Machine learning and complex compositional principles in architecture: Application of convolutional neural networks for generation of context-dependent spatial compositions
source International Journal of Architectural Computing 2022, Vol. 20 - no. 2, pp. 196–215
summary A substantial part of architectural and urban design involves processing of compositional interdependenciesand contexts. This article attempts to isolate the problem of spatial composition from the broader category ofsynthetic image processing. The capacity of deep convolutional neural networks for recognition and utilization of complex compositional principles has been demonstrated and evaluated under three scenariosvarying in scope and approach. The proposed method reaches 95.1%–98.5% efficiency in the generation ofcontext-fitting spatial composition. The technique can be applied for the extraction of compositionalprinciples from the architectural, urban, or artistic contexts and may facilitate the design-related decisionmaking by complementing the required expert analysis
keywords Spatial composition, architecture, convolutional neural network, ordering principles, machine learning, image generation, design, CAAD
series journal
references Content-type: text/html Access Temporarily Restricted

Access Temporarily Restricted

Too many requests detected. Please wait 60 seconds or verify that you are a human.

If you are a human user and need immediate access, you can click the button below to continue:

If you continue to experience issues, please open a ticket at papers.cumincad.org/helpdesk

last changed 2024/04/17 14:29
pick and add to favorite papersHOMELOGIN (you are user _anon_165590 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002