id |
sigradi2018_1676 |
authors |
Hudson, Roland; Velasco, Rodrigo |
year |
2018 |
title |
Thermal Comfort Clustering; Climate Classification in Colombia |
source |
SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 590-595 |
summary |
Our goal is to develop a climatic classification system that extends understanding of human comfort and guides the design of buildings to provide greater thermal comfort to occupants. We propose that using k-means clustering with multivariate climate data a classification system can be defined to objectively represent comfort zones in the tropics. Our study focuses on Colombia, but the approach extends to other countries located in the tropics. |
keywords |
Human comfort; climate classification; clustering |
series |
SIGRADI |
email |
|
full text |
file.pdf (555,516 bytes) |
references |
Content-type: text/plain
|
Allaby, M. (2010)
Climate classification
, A Dictionary of Ecology. Oxford University Press. Retrieved from http://www.oxfordreference.com.liverpool.idm.oclc.org/view/10.1093/acref/9780199567669.001.0001/acref-9780199567669-e-1137
|
|
|
|
Bharath, R., & Srinivas, V. V. (2015)
Delineation of homogeneous hydrometeorological regions using wavelet-based global fuzzy cluster analysis
, International Journal of Climatology, 35(15), 4707–4727. https://doi.org/10.1002/joc.4318
|
|
|
|
Bravo, G., & González, E. (2013)
Thermal comfort in naturally ventilated spaces and under indirect evaporative passive cooling conditions in hot–humid climate
, Energy and Buildings, (63), 79–86. Retrieved from http://www.sciencedirect.com/science/article/pii/S0378778813001758
|
|
|
|
Fovell, R. G., & Fovell, M. Y. C. (1993)
Climate zones of the conterminous United States defined using cluster analysis
, Journal of Climate. https://doi.org/10.1175/1520-0442(1993)006<2103:CZOTCU>2.0.CO;2
|
|
|
|
Givoni, B. (Barukh) (1981)
Man, climate and architecture
, Van Nostrand Reinhold
|
|
|
|
Jendritzky, G., de Dear, R., & Havenith, G. (2012)
UTCI-Why another thermal index?
, International Journal of Biometeorology, 56(3), 421–428. https://doi.org/10.1007/s00484-011-0513-7
|
|
|
|
Olgyay, V., & Olgyay, A. (2015)
Design With Climate: Bioclimatic Approach to Architectural Regionalism
, Princeton University Press
|
|
|
|
Rhee, J., Im, J., Carbone, G. J., & Jensen, J. R. (2008)
Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas
, Remote Sensing of Environment, 112(6), 3099–3111. https://doi.org/10.1016/j.rse.2008.03.001
|
|
|
|
Steadman, R. G. (1994)
Norms of apparent temperature in Australia
, Australian Meteorological Magazine
|
|
|
|
Toe, D. H. C., & Kubota, T. (2013)
Development of an adaptive thermal comfort equation for naturally ventilated buildings in hot-humid climates using ASHRAE RP-884 database
, Frontiers of Architectural Research, 2(3), 278–291. https://doi.org/10.1016/j.foar.2013.06.003
|
|
|
|
Unidata (2012)
NetCDF-Java library and TDS version 4.6.9
, Boulder. CO: UCAR/Unidata. https://doi.org/http://doi.org/10.5065/D6RN35XM
|
|
|
|
Zscheischler, J., Mahecha, M. D., & Harmeling, S. (2012)
Climate classifications: The value of unsupervised clustering
, Procedia Computer Science(Vol. 9, pp. 897–906). https://doi.org/10.1016/j.procs.2012.04.096
|
|
|
|
last changed |
2021/03/28 19:58 |
|